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ABSTRACT:  This paper explains the design and simulation of an artificial neuron using a current-mode mixed signal
four-quadrant multiplier and a class AB non-linear output function as arithmetic building blocks. The proposed neuron
model has been used to simulate a small sensor linearization system, applied to the improvement of negative
temperature coefficient resistor output.  System simulation results and application performance applied to four different
temperature sensor samples are presented. 
 
INTRODUCTION 
 
Artificial Neural Networks (ANNs) are computing tools 
based on the mammalian nervous system operation. 
Basically it consists of several (sometimes many) small 
processing elements, called artificial neurons, highly 
interconnected and arranged in layers. The input-output 
function carried out by these systems is learned by 
means of a training process where input-output data 
pairs are iteratively presented, adjusting the system free 
parameters (called weights) that connect inputs from a 
neuron layer with the preceding neuron layer outputs.  
ANNs can be implemented in several ways, depending 
on the application requirements.  Thus, in systems 
where size, power consumption and speed are main 
requirements, electronic analog implementation is a 
suitable selection [1].  Today, shrink bias voltages 
makes difficult to processing data in voltage-mode.  In 
this case, current-mode processing gives better results at 
lower bias, reducing the power consumption [2]. 
On the other hand, implementation of reliable long-term 
and mid-term analog programmable weights results very 
hard due to mismatching and offsets.  Due to the high 
accuracy of digital storing data for long and mid-term in 
register-based structures, the combination of both 
electronic technologies can improve the system features.  
Previous works [3] have presented the use of mixed-
mode multipliers in artificial neuron implementation, 
showing promising results applied to real problems. 
This paper presents the analysis and simulation of a 
current-mode based artificial neural network with 
digital weight storage and its application to a real 
problem, the linearization of a negative temperature 
coefficient resistor. 
The paper is structured as follows: In the next section 
design and architecture of a current-mode mixed 
analog-digital artificial neuron is presented. Afterwards 
simulation results of this processing element behaviour 
implemented in AMS 0.35µm technology are shown.  
Following we study the use of this processing block 
implementing on a Multilayer Perceptron Network 

(MLP) applied to a real application, the improvement of 
a temperature sensor output, giving results for four 
different sensor samples.  Finally, some conclusions and 
future work are proposed. 
 
PROCESSING ELEMENT 
IMPLEMENTATION 
 
The proposed artificial neuron has been implemented 
using the Austria Microsystems (AMS) 0.35µm design 
kit.  Maximum processing currents are limited to ± 50 
µA, voltage bias are limited to 3.3v in the inverters and 
±2v in the rest of the multiplier structure. 
 
Mixed Digital-Analog Four-Quadrant 
Multiplier 
 
The proposed multiplier block contains a class AB 
current follower (Fig. 1) controlled by the sign bit of the 
digital operand plus a 7-bit digitally programmable 
current divider (Fig. 2).  Current output ranges from Iin 
to -Iin.  An analog multiplexer selects the analog 
operand input path to the digital current divider.  When 
the weight sign bit is positive (b0=0v), current goes to 
the  
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Fig. 1. Class AB current follower 
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divider straight; if sign bit is negative (b0=3.3v), current 
is driven to the current follower, changing the sign of 
the output current. 
 
Programmable Current Divider.  The main four-
quadrant multiplier building block consists of an R-2R 
ladder structure [4] implemented with NMOS 
transistors.  This structure (Fig. 2), widely presented in 
the literature [5], [6], [7], allows the current to flow in 
both directions and is designed using identical 0.3µm 
length and 10µm width transistors working in triode 
mode. 
Gate voltages bi (Fig. 2) control the current flow to the 
right-side transistors (bi=0v) or the left-side transistor 
(bi=3.3v).  For N bits, output current is described 
according to 
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where Iout1 and Iout2 are the lower and upper output 
currents.  In our work, Iout2 has been selected as the final 
output current.  Thus, according to (1), digital weight 
absolute value ranges from 0 to N211− .  Assuming a 
7 bits plus sign weight representation, digital operand 
minimum module value equals to 7.8125·10-3. 
 
Current Follower.  Multiplier sign bit is implemented 
using a class AB current follower scheme presented on 
[8] (Fig. 1).  This structure gives a centred low-
distortion current using a ± 2v bias voltage.  Tables 1 
and 2 show the current follower design characteristics 
and transistor sizes, respectively.  The bias current value 
(30µA, see Table 1) ensures a very low distortion in the 
processing signals range [9].  The resistor value in the 
middle of the structure is 66.66kΩ. 
 
Activation Function 
 
Activation function circuit consists of a class AB 
current conveyor (Fig. 3), similar to the circuit proposed 
in [10].  Circuit output has a tanh type behaviour.  
Design characteristics and transistor dimensions are 
shown in Tables 3 and 4 respectively. 
 

TABLE 1. Current follower design characteristics 

±Vcc [V] ±2 
Ibias [µA] 30 
Vgs [V] ±1 
Vds [V] ±1 

 

TABLE 2. Current follower transistors dimensions 

Transistors W [µm] L [µm] 
A1,A2,A3,A4,A5  4.25 0.3 

A6,A7,A8,A9   13.00 0.3 
A10,A11,A12,A13  48.15 0.3 

A14,A15,A16,A17,A18  0.85 0.3 
 

TABLE 3. Activation function design characteristics 

±Vcc [V] ±2 
Ia [µA] 5 
Ib [µA] 50 
Vgs [V] ±1 
Vds [V] ±1 

 

TABLE 4. Activation function transistors dimensions 

Transistors W [µm] L [µm] 
B1, B2, B3  0.9 0.3 

B4   5.35 0.3 
B5, B6, B7  6.9 0.3 

B8, B9  1.9 0.3 
B10  2.85 0.3 
B11  0.65 0.3 

B12, B13  8.7 0.3 
B14  0.7 0.3 
B15  0.6 2.1 

B16, B17, B18  0.6 1.7 
B19   1.2 0.3 

B20, B21, B22  1.4 0.3 

 

CIRCUIT SIMULATION 
 
Artificial neuron circuit simulation was carried out 
using two different simulators (Spectre and Hspice) 
using Cadence Design Framework, obtaining similar 
results. 
 
Mixed Digital-Analog Four-Quadrant 
Multiplier 
 
Table 5 show results of the current follower simulation. 
As can be seen, the circuit shows a 5% loss current 
(slope is not 1) that can be reduced replacing the simple 
current mirrors used in the design with cascode current 
mirrors.  On the other hand, offset effects are very low. 
The mixed-mode multiplier behaviour has been 
numerically modelled using Matlab.  Real multiplier 
operation is expressed by: 
 

pwpout 0136726.0974865.0 −=  (3)
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Fig. 3. Class AB activation function 
 

TABLE 5. Current follower: Simulation results 

Ioff [nA] 0.74 
Voff [µV] 65 

Slope 0.951166 
 
Where w is the digital weight and p is the analog current 
input to the analog-digital multiplier.  Results are shown 
in Fig. 4.  Fig. 5 presents the differences between the 
ideal operation and the real operation of the multiplier. 
 
Non-Linear Activation Function 
 
Non-linear output function has been modelled using a 1-
15-1 MLP.  Simulation model and ideal tanh output 
functions are shown in Fig. 6.  Differences between 
simulated circuit and ideal output are presented in 
Figure 7. 
 
REAL APPLICATION EXAMPLE: 
SENSOR LINEARIZATION 
 
The following example has been widely analyzed in the 
literature [11], [12], [13].  It consists in conditioning the 
response of a nonlinear sensor with sigmoid output 
using a MLP. There are diverse sensors with this output 
characteristic form (such as giant magnetoresistive 
sensors [14]).  In this work, we have used the well-
characterized negative temperature coefficient resistor 
(NTC) connected on a resistive divider, which voltage 
output is shown in Fig. 8.  In this case, the MLP output 
provides the correction that must be added to the sensor 
characteristic to linearize the total behaviour. 
In order to verify that results are independent of the 
sample we used four datasets from four different NTC 
sensors, training the network for each one of them. 
Patterns of each NTC consist of 71 sensor output 
voltages collected in the 253-323K temperature range. 
For each NTC, data are divided in two datasets, 
consisting of 61 patterns for the learning process and 10 
patterns for the verification phase.  These validation 
patterns are randomly selected from the whole dataset. 
 

 
Fig. 4. Mixed-mode four-quadrant multiplier output 

 

 
Fig. 5 Differences between the ideal and simulated mixed-

mode multiplier 
 

Fig. 6. Non-linear output function: Ideal (dotted line) and real 
(continuous line) 

 

Fig. 7.Differences between the real and ideal operation of the 
activation function 

 



The ANN generalization ability is analyzed using the 
validation dataset and the corresponding network 
output.  In all four examples, output error keeps lower 
than 1K in the same range from 250K to 310K (Figure 
11). 
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Fig. 8. NTC output voltage (connected on a resistive divider).

 
CONCLUSIONS AND FUTURE WORK 
 
In this paper a class AB current-mode mixed analog-
digital processing element designed for implementation 
of artificial neural networks is presented.  The system 
consists of a four-quadrant mixed analog-digital circuit 
that multiplies the analog input current by an 8-bit 
digital weight.  The multiplier output is processed by a 
class AB current-mode non-linear circuit that gives the 
final neuron output. 

 
Network Architecture 

This circuit has been designed using the 0.35µm AMS 
technology.  Simulation results have been used to 
developing a numerical model of the neuron, including 
it in a MLP network model.  In order to validate the use 
of these circuits in real-world applications, the MLP has 
been applied to correct the non-linearity of four 
different negative coefficient temperature sensors.  
Results show an application range extension (error 
lower than 1 degree) of 50% or more. 

 
Previous works [3] show that a 1-1-3-1 MLP network 
architecture gives the best performance results in this 
case.  The used neural network scheme is shown in 
Figure 9.  Output function of the first hidden and output 
layer neurons are linear, while the neurons in the second 
hidden layer have the tanh designed circuit as output 
function.  All of them use the analog-digital multiplier 
designed and explained before.  The use of the real 
multiplier model and non-ideal activation function 
makes necessary to double the number of hidden 
neurons, compared to the use of ideal elements in the 
neuron definition.  On the other hand, accuracy in 
digital weights must be carefully selected.  Considering 
circuit size restrictions and minimum accuracy, an 8-bit 
representation of the weights (with positive and 
negative codification) gives a good system performance. 

The next goal is to reduce the output error drift at the 
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Fig. 9. MLP architecture 

 
Training Results 
 
The resulting artificial neural network is trained on a 
computer.  Our experience confirms that learning 
algorithms based on error back-propagation have 
demonstrated a worse efficacy in network weight 
adaptation in systems with high non-linearities and 
offsets, compared to perturbative techniques [15], [16]. 
These methods evaluate output error variations due to 
small random weight changes.  If a random variation 
makes the error to decrease, the weight change is 
accepted; otherwise, weight remains unchanged.  This 
methodology is not dependent on the arithmetic 
operations carried out by the artificial neuron.  
However, in standard back-propagation algorithms the 
use of different arithmetic operations can change 
drastically the network learning behaviour. 

 

Fig. 10. Corrected output voltage versus ideal linear output 

Although there are proposed in the literature several 
parallel perturbative algorithms developed for systems 
with digital weight storage [17], the learning algorithm 
applied in this work is based on the classical serial 
weight-perturbation algorithm presented in [18]. 
Fig. 10 shows the corrected output voltage compared to 
the ideal expected output (dashed line) after 8-bit 
resolution weight discretization.  As this figure shows, 
the output error remains lesser than 1K between 250K 
and 310K. 

 



  

  
Fig. 11. NTC output error compared to neural network output error for four different NTC sensors 

 
end of the sensor span (from 310K to 325K), modifying 
the design in order to minimize the effects of 
mismatching and offsets. 
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